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We investigate the low-energy properties of the Holstein polaron through calculation of the g-dependent
phonon spectral function using an improved exact-diagonalization technique, defined over a variational Hilbert
space. We perform a comprehensive study of the low-energy excitations of the polaron. Beside the energy
range, where the additional phonon excitation is unbound, we observe separate coherent peaks which corre-
spond to bound and antibound states of a polaron and additional phonon quanta. These novel states can be
observed for intermediate and strong electron-phonon coupling strengths, as well as below and above the
unbound one-phonon excitation spectrum. A detailed investigation of their properties is presented. We find

good agreement between the phonon spectral function obtained from the first-order strong-coupling perturba-

tion theory and numerical results.
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I. INTRODUCTION

Electron-phonon coupling represents one of the funda-
mental mechanisms that determines thermodynamic as well
as transport properties of solids. Polaron formation is a phe-
nomenon where a single charge carrier changes its state by
absorbing or emitting phonon quanta. Its importance has
been identified in many novel materials," such as high-
temperature superconductors,”* colossal magnetoresistance
materials,” molecular crystals, and fullerenes.® In the case
where the electron couples to an optical branch of lattice
vibrations, a widely accepted approximation is used where
the electron-phonon (e-ph) coupling strength and the phonon
energy are considered momentum independent. This leads to
a Holstein molecular crystal model, which is one of the most
fundamental models in solid-state physics. Many analytical
and numerical methods have provided a fair understanding
of its ground-state properties, i.e., the formation of a
polaron.””'? Its behavior, particularly in the intermediate-
coupling (IC) and strong-coupling (SC) regimes, strongly de-
pends on the strength of the phonon energy w,. In the antia-
diabatic regime where the Lang-Firsov transformation'® in
the SC limit provides a comprehensive picture of the po-
laron, most approximations usually manage to calculate the
system properties qualitatively correctly, while the treatment
of adiabatic quantum phonons poses a more challenging task
and is a matter of the recent scientific interest.'4-10

Above the polaron ground-state energy E°, several fea-
tures of the excited states can be observed. In particular, we
are interested in the low-energy excited states which do not
belong to the one-phonon continuum of an unbound phonon
starting at E'+w,. A while ago, the emergence of a state
below the one-phonon continuum has been reported.'”!® In
addition, a coherent state above the continuum has been
found using dynamical coherent-potential approximation.'®
In the last decades, the investigation of these states spread to
all parameter regimes of the Holstein model. In the SC adia-
batic approximation,?>?! several states were observed below
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the continuum. When moving to nonzero phonon energies,
one such state was found in the SC approximation?’> and
three states in the IC regime using exact-diagonalization
technique.?® Recently, an investigation of properties of the
coherent states below the one-phonon continuum was per-
formed by variational exact diagonalization®*? and
momentum-averaging (MA) approach.?6-28

Regarding dynamical properties of the Holstein polaron,
the analysis rarely focused on the states outside the con-
tinuum. Spectral weight was assigned to these states in the
calculation of one-electron spectral function using dynamical
mean-field theory (DMFT) (Ref. 29) and MA approach,?®
optical conductivity using DMFT,** and in the quantum
Monte Carlo study of the one-electron spectral function in
the Rashba-Pekar model.?' Less emphasis has been devoted
to the phonon spectral function. The latter was studied in
Ref. 32, where authors numerically and analytically calcu-
lated the g-dependent phonon spectral function for various
phonon energies and for all relevant e-ph coupling regimes.
In the low-lying excitation spectrum they find a mirror peak,
which was supposed to represent a state lying an energy
above the polaron peak. They did not focus on the descrip-
tion of the excited states below the one-phonon continuum.
On the other hand, the author of Ref. 33 studied lattice cor-
relation functions of few excited states below the continuum
in the IC regime, representing the spectral weight of the pho-
non spectral function. Calculating these correlations, the au-
thor showed that these states contain a nonvanishing spectral
weight and should contribute to a formation of coherent ex-
cited bands. Nevertheless, the features of the spectrum at and
above wy were not studied. Taking this into account, we ar-
gue that a comprehensive study of the low-lying features of
the Holstein polaron phonon spectral function is still miss-
ing. In particular, the emergence of the states below and
above the one-phonon continuum, denoted here as the novel
states, needs to be characterized.

In this paper we study the low-energy spectrum of the
Holstein polaron model, reflected through calculation of the
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g-dependent phonon spectral function. Using an efficient
exact-diagonalization technique defined over a variational
Hilbert space,>* we are able to investigate a polaron band as
well as a nondispersive continuum band starting at w, above
the polaron ground state. This band represents the states
where the additional phonon excitation is not bound to the
polaron. In addition, the emergence of novel states with the
energy below and above the one-phonon continuum is stud-
ied. These states are denoted in the text as bound and anti-
bound states, respectively. Calculation of the static correla-
tion function in these states shows that the weight of the
extra phonon excitations decreases exponentially with the
distance from the polaron. For different values of the model
parameters, a particular emphasis is given to the onset of the
antibound state, not studied before in the literature. The
emergence of one bound and antibound peak in the phonon
spectral function is studied within the framework of the first-
order strong-coupling perturbation theory. For a certain range
of the model parameters, this analytical calculation provides
results that are in good agreement with the numerical solu-
tion.

The paper is organized as follows. In Sec. II we introduce
the model and the numerical method. In Sec. III we show the
numerical results while in Sec. IV we compare the results
with the first-order strong-coupling perturbation theory. A
summary is given in Sec. V.

II. MODEL AND NUMERICAL METHOD

We start by writing the one-dimensional (1D) spinless
Holstein model as

H=- IE (cchj +H.c)+ gE n,»(aj +a;) + wOE aja[,
(i.j) i i

(1)

where c; and aj are electron and phonon creation operators
at site i, respectively, and n,:cfci electron density at site i
(with n;=0, 1). The total number of electrons in the system is
equal to 1. w, denotes a dispersionless optical-phonon en-
ergy and ¢ nearest-neighbor hopping amplitude (we set =1
in Secs. I-III). The e-ph coupling strength is denoted as g
and will be in the following replaced by a dimensionless
coupling g=g/ wy.

The phonon Green’s function, that corresponds to the
displacement-displacement correlation function, is defined as

D(q.t, - 1) = = iy | T, (1) %] (1) ]| ). ()

where £q=aq+aiq and T the time-ordering operator. Apply-
ing the Fourier transform and calculating the spectral repre-
sentation  B(q, w):—J—TIm DR(q,w), where >0 and
D®(q,w) the retarded Green’s function, one gets the corre-
sponding phonon spectral function,

B(w) = 2 (Yle_ " olw - (E) - E9)], (3)

with E° and ¢° denoting the polaron ground-state energy and
wave function, respectively, while the sum runs over all ex-
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cited states. The ground-state wave function #” has momen-
tum k=0 and ¢ may be nonzero.

We used an improved numerical method, originally intro-
duced in Ref. 24, which constructs the variational Hilbert
space (VHS) starting from the single-electron Bloch state
¢{|0) on infinite lattice. The VHS is then generated by apply-
ing the off-diagonal terms of Hamiltonian (1) to the starting
state,

{| ¢1((],\;h'M)>} = (Hy, + Hf)thi‘;l(b% (4)

where H,j, and H, corresponds to the first and the second
term of the Hamiltonian in Eq. (1), respectively. The set of
basis states is determined by parameters N, and M, where
N;,—1 is the maximum distance between the electron and the
phonon quanta and N, *M is the maximum number of pho-
non quanta contained in the Hilbert space. The parameter
M >1 first introduced in Ref. 34, is chosen to ensure good
convergence for the strong e-ph coupling in the adiabatic
regime where the low-energy states contain multiple phonon
excitations. On the other hand, large values of N,, provide a
fair description of the polaron states also in the weak-
coupling (WC) regime, where the spatial extent of a lattice
deformation around the electron is large. We have used N,
=8 and M =4 that lead to converged results in all parameter
regimes. Note that for any Hilbert space in our calculations
the number of sites is infinite. The convergence toward ther-
modynamic limit is then achieved when the number of pho-
non states for a given electron location is sufficiently in-
creased. Once the VHS is generated, the Holstein
Hamiltonian is diagonalized using standard Lanczos proce-
dure, where translational symmetry is explicitly taken into
account.

III. RESULTS

To start the calculation of the phonon spectral function,
defined in Eq. (3), we first focus on the lowest-energy peak
that represents the polaron ground state. Its spectral weight is
proportional to the electron density 1/N and increases when
approaching the SC limit as g2. In the adiabatic regime o,
<1 the crossover from large to small polaron occurs for A
=¢€,/2t=1, where €,= g%wy is the polaron energy at r=0 and
N a dimensionless e-ph coupling. In Fig. 1(a) the
g-dependent phonon spectral function is plotted for wy=0.2
and A=1.05. At this e-ph coupling strength the bandwidth of
the polaron W is reduced to W={W,=W,/10, where W, is
the polaron bandwidth in the WC limit (W= w, if w;<4 and
W,y=4 otherwise) and { a dimensionless parameter. When
is increased away from the adiabatic regime, the crossover to
SC regime is less abrupt. In Fig. 1(b) it can be seen for o,
=1.0 and A =1.5 that the polaron dispersion is still substantial
and {=0.31.

We now turn to the investigation of the low-lying excited
states, representing the main focus of the paper. Naively, the
low-lying excited states should consist of a polaron at a par-
ticular k point and an additional unbound phonon excitation
with momentum Q, leading to an arbitrary total momentum
q=k+Q of the composite excited state. This implies that in
the thermodynamic limit of the phonon spectral function, the
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FIG. 1. (Color online) (a) g-dependent phonon spectral function
B,(w) for g=0, ..., and w;=0.2, N=g%/2twy=1.05. Only the po-
laron peak and one-phonon excitation spectrum is shown. We have
used an artificial damping of €=0.003. The Roman numerals L., II.,
and III. denote the three bound states. (b) B,(w) for wy=1.0 and
A=1.5. Here only the lowest bound state (Roman numeral I.) can be
observed. An artificial damping of €=0.01 was used. The Roman
numeral IV. denotes the antibound peak, where the one-phonon ex-
citation has an energy higher than wy+ W. The nondispersive peak
(denoted by R) corresponding to one-phonon excitation repelled
from the polaron is located slightly above wy+W. This peak is
described in more detail in Figs. 2 and 4 and further in the text. The
gray areas correspond in (a) and (b) to a continuum of states in the
interval [wg,wg+W]. We used the Hilbert space obtained for N,
=8, M=11 that lead to Ny=5.9 X 10°.

unbound excited states would have a nonvanishing spectral
weight in the interval [w), wo+ W]. In Fig. 1, this continuum
of states starting at wy is shaded and its width is given by the
bandwidth W of the polaron peak. Due to the numerical re-
strictions of the variational Hilbert space, the calculations do
not show a considerable spectral weight throughout the
whole continuum band, even though its approximate width is
well reproduced. When increasing the Hilbert space, the den-
sity of states inside the continuum band grows. The effects of
the finite-size Hilbert space will be discussed later.

Beside the unbound one-phonon excitations, it is well
known that in the IC regime of the Holstein model a bound
state of a polaron and additional phonon excitations appears,
where the additional phonon excitations are bound to the
polaron and the energy of such composite state is less than
w, above the ground state. This phenomenon is sometimes
denoted as softening. It has been shown?*?3 that the average
value of phonon quanta in the bound state N}]h=(2,<aja,<> can-
not be related to the corresponding value of the ground state
as N,l;h:Ngﬁ 1. The latter holds true only for the unbound
one-phonon excitations. In general, there are two bound
states with different symmetry of the wave functions. In Fig.
1(a) for wy=0.2 and A=1.05, the lowest bound state denoted
by the Roman numeral I. has a symmetric wave function at
q=0 and an antisymmetric wave function at g=, while the
second bound state (the Roman numeral II.) is symmetric at
g=m. Their spectral weight in B (w) is approximately pro-
portional to electron density 1/N and vanishes at g=0
state.?? In the case of A=1.05, an additional excited state (the
Roman numeral II1.) appears below the phonon threshold w,.

PHYSICAL REVIEW B 82, 104304 (2010)

This state, however, has a nonvanishing spectral weight also
at g=0. The emergence of the bound peaks in B,(w) is best
resolved in the IC regime as shown in Fig. 1, since with the
increasing of e-ph coupling toward the SC regime, their po-
sitions approach the phonon threshold w,. On the other hand,
when the phonon energy is increased [the case for wy=1.0 is
shown in Fig. 1(b)] the positions of the bound peaks shift as
well closer to the bare phonon energy. In this case only the
lowest bound state (the Roman numeral 1.) can be resolved
from the spectrum.

While the nonzero spectral weight in B (w) for the peaks
below the phonon threshold was suggested in previous
works,33 we find a novel coherent peak located above the
continuum band of unbound one-phonon excitations. This
peak is denoted by the Roman numeral IV. in Fig. 1(b). In
analogy to the bound states, this peak represents a state
where the polaron and additional phonon excitations are an-
tibound, i.e., its energy is above the upper edge of the con-
tinuum band of the unbound one-phonon excitations, EY
> wy+ W. Note that for wy=0.2, as seen in Fig. 1(a) no anti-
bound peak can be observed as its spectral weight is vanish-
ingly small. One of the first indications that the energy spec-
trum of the Holstein polaron can contain a state above the
one-phonon continuum for the nonadiabatic values of the
phonon energy, was reported many years ago in the calcula-
tion based on dynamical coherent-potential approximation. '’
Recently, coherent states above the one-phonon continuum
were observed in the study of one-electron spectral function
using DMFT (Ref. 29) and MA approach.?

The antibound peak is more pronounced for the higher
values of wy. In Figs. 2(a)-2(c) we plot the g-dependent
phonon spectral function for wy=2.0 and 6.0, respectively.
As the strength of the dimensionless e-ph coupling g> ap-
proaches the SC limit, the spectral weight of the antibound
peak increases. The energy of its state relative to the ground
state E”q’ is the highest at g=, however its dispersion is not
proportional to the polaron dispersion. When the momentum
is decreased, the energy decreases, but always remains above
the continuum band. Its spectral weight vanishes at the g
=0 point, where the symmetry of the antibound wave func-
tion is antisymmetric. On the other hand, the wave function
is symmetric at g=m. Note that in all cases under investiga-
tion when wy>1, we use the dimensionless e-ph coupling
g=g/w,. In the antiadiabatic limit wy> 1, the condition g
=1 determines the crossover from large to small polaron.

The phonon spectral function calculated in Ref. 32 using
the kernel polynomial method can be compared to our re-
sults. We find a similarity between the antibound peak as
denoted in our paper and the mirror peak as defined in the
latter reference. Even though the authors of Ref. 32 did not
examine the structure of this peak, we may speculate that
these two peaks represent the same state. In the second part
of this section, we shall further investigate the properties of
the antibound state through calculation of the e-ph correla-
tion function (Fig. 4) and its evolution when the e-ph cou-
pling increases (Fig. 5 and 6).

In addition to the bound and antibound peaks, described
above, another feature of the phonon spectral function can be
observed in Figs. 1, 2(a), and 2(b), denoted by the letter R.
This is a nondispersive peak located slightly above wy+W
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FIG. 2. (Color online) [(a) and (b)] g-dependent phonon spectral
function B, (w) for g>=1.0 (where {=0.62) and g?>=2.0 (£=0.29),
respectively, and wy=2.0. (c) g-dependent phonon spectral function
B,(w) for g%*=1.5 ({=0.22) and wy=6.0. The gray areas correspond
to a continuum of states in the interval [wy, wg+W]. An artificial
damping of €=0.02 was used in all cases. The Hilbert space used in
the calculation was obtained for N,=11, M=8. The inset of (c)
shows Bq(w) around wy=6.0 at g= for different system sizes. The
lowest peak (red curve) corresponds to a Hilbert space (N, M)
=(8,11), Ny=5.9 X 10°. As the weight of the peak increases and its
position shifts to lower energies, Hilbert space is changed to (10,7),
(12,7), and (14,4), which implies Ny=1.8% 105, 2.5% 107, and
1.8 X 107, respectively.

with the spectral weight comparable to the peaks due to
bound and antibound phonon excitations. However, due to
the nondispersive nature of the peak, its origin should be
different from the latter peaks. Even though it seems from
Figs. 1 and 2 that its spectral weight is not sensitive to the
value of w, it suddenly vanishes as w;>4.0, as demon-
strated in Fig. 2(c) for wy=6.0. We will show later in the
calculation of the e-ph correlation function [Eq. (5)] that this
state is formed by a polaron and an additional phonon exci-
tation, where the latter is repelled from the polaron in real
space. We shall argue as well that the position of this peak
approaches wy+W from above as the size of the Hilbert
space increases and in the thermodynamic limit merges with
the continuum. In contrast, spectral weight and positions of
peaks L.-IV. are well converged in the thermodynamic limit.

The energy of the polaron ground state calculated by our
numerical method is variational in the thermodynamic limit
as N, — and can be calculated to a great accuracy.® This is
also reflected in the calculation of the polaron energy in dif-
ferent ¢ points, where its peak position is not sensitive to
different sizes of Hilbert space (not shown in the paper). For
the unbound one-phonon excitations, where the additional
phonon excitation is not correlated with the polaron position
and can be located anywhere on the lattice, the energy con-
vergence is slower. The dominant contribution of the un-

15 " 25

FIG. 3. (Color online) B,(w) for ¢%=3.0 and wy=2.0 ({=0.12).
The polaron peak is not shown and the repulsive peak is removed
from the figure. The gray area corresponds to the continuum band
of unbound states in the interval [w, wy+ W]. An artificial damping
of €=0.007 was used. The three curves were obtained using the
following parameters (N,,M): (10,4)—red, (12,4)—yellow, and
(14,4)—black, that lead to the following number of basis states:
Ng=2.2X10°,2.0X 10° and 1.8 X 107. The peaks below and above
the gray area, where the curves are nearly overlapping, correspond
to the lowest bound state (green) and to the antibound state (blue),
respectively.

bound phonon excitations in the phonon spectral function
comes from the peak at w, above the polaron ground state. In
our calculations the position of this peak is located at w,
+ € for a finite N, where € decreases when N, is increased.
For a fixed system, € is the largest in the WC limit. In the
current work, our main focus is the behavior of the phonon
spectral function in the IC regime. Generation of a sufficient
number of phonon excitations in the vicinity of the charge
carrier in this regime starts to play a more crucial role on the
system properties than the maximal distance between po-
laron and the extra phonon excitation. While the first condi-
tion is well controlled by the value of the parameter M in the
generation of VHS, the latter is determined by the parameter
N,. We use this subtle interplay between the values of these
two parameters generating the Hilbert space to achieve the
convergence of both unbound, bound and antibound low-
energy states in the phonon spectral function. The inset of
Fig. 2(d) show the position of the w, peak for g=m, g°
=1.5, and wy=6.0. As N, increases from N,=8 to 14, the
peak indeed approaches the bare phonon energy and gains
the spectral weight. We have thus shown that for various
sizes of the Hilbert space included in our calculation, the w,
peak is well reproduced.

It is crucial to show that not only the wy peak but the
bound and antibound peaks as well as the width of the con-
tinuum band converge well within the framework of our nu-
merical method. This can be seen from Fig. 3, where the
low-energy excitation spectrum of B,(w) is plotted for w,
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FIG. 4. (Color online) Electron-phonon correlation number
’}/'(l —j) for the ground state and various excited states at wy=2.0.
(a) Polaron ground state at g=0 and g=1 for gZ=1.0. (b) An ex-
cited state with momentum g=1 and g?=1.0, which lies an energy
w above the state in the inset of (a). (c) The lowest bound state at
g=0 and g=/2 for g=3.0. (d) Antibound and repulsive state at
g=m and g*>=1.0. Note that the integral for the repulsive state over
the two humps marked by arrows, is equal to 1.0. The insets show
the correlation functions on a logarithmic scale. The Hilbert space
used in these calculations was obtained for (N,,M)=(12,7) and
Ny=2.5%10".

=2.0 and g*>=3.0. Results are obtained for different system
sizes N,=10, 12, and 14 while the parameter M is fixed to 4.
There are two important features in this figure. The first one
concerns the continuum of the unbound phonon excitations
in the interval [wy, wy+ W]. The density of the states in this
interval depends on the maximal number of allowed phonon
quanta in our calculation as well as on the maximal allowed
distance between the phonon quantum and the polaron. As
the parameter N, is increased, the unbound states become
denser, leading in the thermodynamic limit to the continuum
of states with the nonzero spectral weight. On the other hand,
the lowest bound peak and the antibound peak are located
outside the continuum. Since in the case of the bound and
antibound states the additional phonon quanta are attached to
the polaron, their position and weight in the phonon spectral
function should be less sensitive to the finite Hilbert space.
Indeed, the three nearly overlapping curves for different Hil-
bert spaces in Fig. 3 indicate that these peaks are well con-
verged states, clearly separated from the continuum of states.
This is not surprising since in this case, as we shall see in
Fig. 4, the amplitude of the extra phonon excitations de-
crease exponentially with the distance from the polaron and
can be described efficiently within the VHS.

In order to investigate the structure of the observed peaks
of the Bq(w) in more detail, we calculate the static electron-
phonon correlation function,

Vi = j)=(Ylc]ciala gy, ®)

which represents the distribution of the number of excited
phonon quanta in the vicinity of the electron. The strength of
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the numerical method is reflected in the fact that ';/7(1 J) can
be calculated for (i—j)>10 in any state g as well as for any
low-lying excited state n obtained by the Lanczos diagonal-
ization.

Using ¥,(i—j) of Eq. (5), different properties of the ex-
cited states can be analyzed. For example, the unbound state
can be distinguished from the bound and antibound state. In
Fig. 4 we plot ¥,(i—j) at wy=2.0. We start with the polaron
state at g2=1.0, Flg 4(a). The ground state at the g=0 point
has the minimum number of phonon quanta, located in the
vicinity of the electron, while the number of phonon quanta
increases when ¢ approaches the Brillouin-zone boundary.
To show the spatial correlation of the electron and phonon
position, the exponential decay of yq(z ])|q ~ 1s shown in
the inset of Fig. 4(a). The one-phonon excitation of the latter
state is shown in Fig. 4(b). As seen from the inset of the
figure, this state does not exhibit an exponential decay, i.e.,
the additional phonon excitation is unbound.

It is interesting to compare Fig. 4(b) with Figs. 4(c) and
4(d), where we plot ')/'(l ) for the first bound (at g>=3.0)
and the antibound state (at g°=1.0), respectively. Note that in
Fig. 3 the finite-size investigation was performed for wy
=2.0 at g>=3.0 due to the poor resolution of the bound peak
for the lower values of the e-ph coupling [compare with Figs.
2(a) and 2(b)]. Nevertheless, the antibound peak detaches at
the g= point from the continuum already at g>==0.77. In
the inset of Figs. 4(c) and 4(d), )/“(z —J) is shown on a loga-
rithmic scale for g=m/2 (bound state) and g= (antibound
state), respectively. For both cases the exponential decay
confirms that in such composite excited states, the extra pho-
non excitations are bound to the polaron.

Other important information can be obtained from v,(i
—J). As already mentioned in the discussion of Figs. 1 and 2,
there is a nondispersive peak in B (w) denoted by R with a
considerable spectral weight located above the continuum of
unbound phonon excitations. When increasing the size of the
Hilbert space (not shown in the paper), its spectral weight
does not scale to zero and remains a well defined quantity. In
Fig. 4(d), the structure of this state can be resolved for
(N,,M)=(12,7). Its striking features are two humps, well
separated from the polaron peak. The integral over each of
the humps gives 0.5 for any momentum, which implies that
an additional phonon excitation is repelled from the polaron.
Consequently we call the nondispersive peak obtained in
Figs. 1 and 2, the repulsive peak. Due to the repulsion be-
tween the polaron and an extra phonon excitation, its energy
will always remain above wy+W in the finite Hilbert space
calculations. Thus the energy gap between this peak and the
continuum band is an artifact of the method and scales to
zero in the thermodynamic limit. Consequently, the repulsive
peak would merge with the upper edge of the continuum
band of the unbound states.

By now, our aim has been to identify and introduce all the
distinct features of the phonon spectral function and to prove
their robustness to the finite-size Hilbert space. We would
now like to get some general insight into the emergence of
these novel states for different values of the phonon energy
and the e-ph coupling strength.

In Fig. 5 we plot the phonon spectral function for a fixed
g and different values of g?>. We focus here mainly on the
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FIG. 5. (Color online) B,(w) for different values of e-ph cou-
pling strength. (a) g=0 and (b) g=1r, both at wy=2.0. (¢) g=0 and
(d) g=r, both at wy=6.0. For the latter phonon energy, the polaron
peak is not shown. An artificial damping of €=0.02 was used. The
Hilbert space was obtained for parameters (N,,M)=(8,11). The
blue peak, denoted by the Roman numeral IV., represents the anti-
bound peak, while the red peak dashed by horizontal lines and
denoted by R represents the repulsive peak.

antibound and repulsive peak. In Figs. 5(a) and 5(b), B,(w) is
shown for g=0 and g=r, respectively, and wy,=2.0. At these
values of parameters, the particular ¢ points do not show any
spectral weight of the bound states. On the other hand, the
repulsive peak denoted by R located slightly above wy+ W, is
clearly visible and gains its spectral weight when the e-ph
coupling is increased. The peaks in the continuum band of
the unbound one-phonon excitations display a maximum at
w, while their distribution and spectral weights decrease to-
ward the upper edge wy+ W. Nevertheless, due to the emer-
gence of the repulsive state in our calculations, we would
anticipate an increase in the spectral weight at the upper edge
of the continuum band. When wj is increased to 6.0, as seen
in Figs. 5(c) and 5(d), the repulsive state and correspond-
ingly the nonmonotonous decay of the unbound excitation
spectrum disappears.

The antibound peak observed in the same spectra for g
= denoted by the Roman numeral IV. is detached from the
continuum of states and gains as well its spectral weight
when the e-ph coupling is increased. In addition, it is more
pronounced for higher values of w, when calculated for the
same values of the dimensionless e-ph coupling g2. This
should be compared to Fig. 1(b) where B (w) is plotted at
wo=1.0 and \=1.5 (i.e., g2=3.0). In this figure the antibound
peak can be hardly observed. Note that there is the repulsive
peak in Fig. 1(b) located above the well-converged anti-
bound peak. As the system size N,, is further increased, the
repulsive peak moves to lower energies, as indicated before.

In general, there is no theoretical argument against emer-
gence of additional coherent states above the wy+ W thresh-
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FIG. 6. (Color online) Energy positions of different states in the
phonon spectral function above the w, threshold vs the strength of
the e-ph coupling. Dashed line marks the state at w, above the
polaron ground state while the dotted line marks the state at 2w.
Bound states are not shown in the figure. The black curve denotes
the wy+ W state and the blue curve the antibound state at g=7 with
the energy EZ. Vertical dashed-dotted line marks the lowest value of
g, at which the antibound peak can be observed at a particular w.
The Hilbert space was obtained for parameters (N,,M)=(8,8) that
lead to Ny =2.0X 10°.

old in the energy spectrum of the Holstein polaron. In Sec.
IV we calculate the one-phonon excitation spectrum of the
polaron in the SC antiadiabatic limit, as described within the
Lang-Firsov picture. The first-order perturbation theory pre-
dicts only one state above the wy+ W continuum in this limit,
consistent with our numerical results. As seen from Figs. 5
and 6, this state, denoted throughout the paper as the anti-
bound state, persist up to IC regime of e-ph coupling and
moderate values of w,. However, in the adiabatic limit wy
<1 where multiple excited coherent states exist below the
wq continuum, it is likely that several coherent states emerge
above the continuum as well. In terms of the phonon spectral
function as shown in Fig. 1(a), the latter states have vanish-
ingly small spectral weight and are not discussed in the pa-
per.

When addressing the emergence of the antibound state in
B,(w), a question arises at which values of e-ph coupling the
corresponding peak can be resolved from the spectrum.
Since in the last part of this section (Fig. 7) we show that the
onset of this peak exhibit a nonmonotonous behavior when
the model parameters are changed, we need to get some
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FIG. 7. (Color online) The minimum strength of the e-ph cou-
pling for a fixed value of wy, at which the bound or antibound state
detach from the band of the unbound one-phonon excitations. The
antibound state is plotted for g=7 and the bound state for ¢g=0.
Note that the e-ph coupling energy g was introduced in Eq. (1). The
dashed line represents the case when g=wy (i.e., the result from the
first-order scpt for both bound and antibound state) while the dotted
and solid line correspond to the cases when the polaron bandwidth
is reduced to W={W,. The inset shows the same results in terms of
the dimensionless adiabatic parameter A.

more insight into the properties of the antibound state.

In Fig. 6 the energy positions relative to the polaron
ground-state energy E° for different states above the w,
threshold are plotted vs the strength of the e-ph coupling.
The gray area corresponds to the continuum band with the
upper edge wy+W and the blue curve, i.e., the full line
emerging out of the continuum, represents the antibound
state with the energy E7 at g=7. A particular emphasis is
given to the onset of the antibound state. A vertical dashed-
dotted line marks the lowest value of gz, for which this state
can be observed. It emerges out of the one-phonon con-
tinuum if wy>2.0 [see Figs. 6(a)-6(c)] or out of higher-
energy continuum if wy=2.0 [see Fig. 6(d)].

The above analysis shows that the antibound peak is not
part of the continuum band and its energy is always higher
than w, above the top of the polaron band. Thus we propose
a slightly different interpretation of this peak than in Ref. 32.
In our picture the peak corresponds to the state where the
additional phonon excitations are attached to the polaron.
This is qualitatively different from the states in the con-
tinuum band, where the extra phonon excitation is not bound
to the polaron. In Sec. IV we will derive similar results from
the calculation of B,(w) within the first-order strong-
coupling perturbation theory.

To conclude the discussion we present a diagram in Fig.
7. For a particular value of wy, it shows the minimal strength
of the e-ph coupling that the bound or antibound state would
detach from the band of the unbound one-phonon excita-
tions. For the antibound state, the minimum e-ph coupling is
in the state g= while for the lowest bound state the mini-
mum appears at g=0. Note that for the bound peak, its spec-
tral weight is zero at g=0. Consequently, the corresponding
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curve in Fig. 7 represents just its lower boundary. It is in
good agreement with Refs. 24 and 26, where both analytical
approximations as well as numerical calculations are com-
pared. As in Fig. 7 different regimes of w, and g are included
in the diagram, not all of the parameters are of physical
interest. For a fixed w, a state at {=W/W,=10"" is repre-
sented by a dotted line and a state at =107 by a solid line.
Above the latter value, the polaron is self-trapped and can be
in the nonadiabatic regime well described by the Holstein
Hamiltonian in the atomic limit #=0.

As already noticed in Fig. 6, where the vertical dashed-
dotted lines mark the onset of the antibound peak in Bq(w),
the corresponding curve in Fig. 7 shows a nonmonotonous
behavior. It can be divided in two parts connected to each
other at wy=2.0. While in the adiabatic regime the spectral
weight of the antibound state is vanishingly small (see Fig.
1) and its emergence begins at the e-ph coupling values com-
parable to that of the bound states, the most interesting be-
havior starts at wy,=2.0. In particular, for 2.2 < w,<3.0, the
onset of the antibound peak occurs at g2<0.5, i.e., for the
values of e-ph coupling in the IC regime. The dashed curve
in Fig. 7 represents the case when g=1.0, which is as well
the onset of the bound and antibound state derived from the
first-order strong-coupling perturbation theory (scpt). Com-
paring this to the numerical results in the nonadiabatic re-
gime, we see that for a fixed w,, the emergence of the bound
state is shifted to higher values of the e-ph coupling while
the emergence of the antibound state occurs always at g
<1.0.

IV. STRONG-COUPLING PERTURBATION THEORY

The phonon spectral function can be calculated analyti-
cally in some limiting cases. Starting from the SC limit ¢
=0 where the Hamiltonian of Eq. (1) describes a displaced
harmonic oscillator on the site of the electron, we derive the
expression for B (w) in the first-order perturbation of hop-
ping ¢. We follow the procedure initiated in Refs. 24 and 36.
Our aim is to show that both bound and antibound state can
be described already by the first-order scpt and their spectral
weight in B (w) compared to the numerical result.

Applying the canonical transformation H=e¢SHe™s with
S:—gEj(aj—aj-)n, one gets the Hamiltonian ﬁ:ﬁ0+ Vv,
where the unperturbed part of H is

ITIO = woz a;aj - epz n; (6)
J J

and V is considered a perturbation,

~ 2 ' ot
V=—tes Y, (c;cj+]e‘g(“j_”j+l)eg(“j_ai+1) +Hc). (7)
~

We have introduced the new basis where a harmonic oscil-
lator has a shifted origin on the electron site j. We denote
such state as | g;)- The ground-state wave function at arbitrary

g point, which corresponds to the energy E2=—ep

2 . . . . .
—2te™8 cos g, can be written in translationally invariant form
as |¢)=1/\NZ,e¥|g;), where N is the number of lattice
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FIG. 8. (Color online) B,(w) for wy/t=2.0 and g>=2.5. (a)
B, (w)= Bg(w)+Bq(w) calculated from the first-order scpt for N
=51 sites [Egs. (9) and (12)]. (b) Numerical results, obtained using
the parameters (N;,,M)=(8,11). The bound peak (the Roman nu-
meral 1.) and the antibound peak (the Roman numeral IV.) can be
observed in both cases. The repulsive peak (denoted by R) is ob-
tained only in (b). An artificial damping of €=0.01 was used.

sites. The bosonic operators a; and a in Egs. (6) and (7) act
relative to |g;) if j=i and relative to an unshifted oscillator if
JFI.

Once the ground-state wave function is known, the po-
laron spectral weight in B, (w) can be obtained from the ma-

trix element,
Wla)+a )= L. (®)
VN
which leads to the polaron peak
4 2
By(w) =~ dlo=21e (1 - cos g)] )

The weight of the peak is proportional to the e-ph coupling
parameter g2. In Fig. 8, B,(w) is shown at w,/t=2.0 and
g*>=2.5, calculated (a) from the first-order scpt and (b) nu-
merically. The dispersion and the bandwidth of the polaron
peak show good agreement since ¢ yields 0.16 in (a) and
0.18 in (b).

The main focus of the calculation is the low-energy exci-
tation spectrum. There are N degenerate wave functions that
consist of the translationally invariant electron state and an
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additional phonon quantum at a fixed distance d away from
the electron,

|y = 2 eal, g (10)

The definition of the bosonic operators is the same as in Egs.
(6) and (7). To obtain the energies of the excited states one
needs to calculate the matrix elements V' . =W VI For
g>1, there are N—2 solutions lying in the energy interval
[EiEJlr] where E1i=—osp+cuoi2te‘g , and two additional
states lying below and above the interval. These are the
bound and antibound state, respectively. The emergence of
these two states at g=1 is plotted by the dashed curve in Fig.
7. For g=1, the bound state first detaches from the con-
tinuum at g=0 and the antibound state at g=. When g is
further increased as shown in Fig. 8(a) for g?=2.5, these two
states detach from the continuum for all values of ¢. In the
g— 0 limit, both bound and antibound states approach the
energy —e€,+ w.

The spectral weight of any one extra phonon excitation in
B,(w) can be obtained from the matrix element,

N 1 . .
(Wilal|’y = =2 big)e'™, (11)
N 4

where |i,)=2b,(q)|4,) is the corresponding eigenstate of

the matrix V!. Note that (yla_,|yfy=0 for any state. The
total spectrum of the one extra phonon excitations is then

Biw =3~

1g)e |’ w— (B - E)]. (12)

The comparison of the phonon spectral function between the
first-order scpt and numerical results is shown in Fig. 8 for
g*=2.5 and w,/t=2.0. While the repulsive peak does not
appear in the first-order scpt approximation, the bound and
antibound peaks can be resolved from both spectra at very
similar energy positions and comparable spectral weights.
The wave function of the bound state is symmetric at g=0
and antisymmetric at g= while the opposite is true for the
antibound state. This indicates that the essential physics of
these two novel states is well captured by the first-order scpt,
where the calculation of the one extra phonon excitations, as
determined by the matrix elements ‘731  is analogous to the
1D tight-binding problem, modified around the position of
the electron.?* In fact, if one assumes a regular tight-binding
model with a nonzero onsite energy e, at only one site, its
analytical solution yields an additional localized state below
(for ey<<0) or above (for e,>0) the continuous band of itin-
erant solutions.

V. SUMMARY

In conclusion, the main focus of the paper has been to
calculate the low-energy features of the phonon spectral
function for the phonon energies w, ranging from adiabatic
to antiadiabatic regime. Using an improved exact-
diagonalization method defined over a variational Hilbert
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space, we were able to get converged results in a wide range
of the e-ph coupling strengths with special emphasis on the
properties in the IC regime. In particular, we were interested
in the low-energy excitation spectrum of the polaron, where
the most spectral weight originates from the states where the
polaron and the additional phonon excitation are unbound.
These states are limited to the energy interval with the width
equal to the polaron bandwidth W. Even though in our cal-
culations we use a finite Hilbert space, the results are con-
sistent with the existence of a continuum band of unbound
excited states in the thermodynamic limit.

In addition, we have identified the emergence of novel
states in the spectrum of the low-energy excitations for dif-
ferent regimes of model parameters. Below the continuum
band we have found three bound states of the polaron and
additional phonon excitations with the energy less than wy
above the polaron ground state. On the other hand, we have
found one state above the one-phonon continuum denoted as
the antibound state which consists of the polaron and addi-
tional phonon excitations with the energy higher than w
+ W above the polaron ground state. In both cases we showed
that the spatial correlation between the polaron and extra
phonon excitations decrease exponentially with the distance
from the polaron. Consequently, the numerical method can
calculate their properties to a sufficient accuracy. Beside the
bound and antibound states, we identified the state with a
considerable spectral weight where the additional phonon ex-
citation is repelled from the polaron. Due to the finite Hilbert
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space in our calculations, the energy of such repulsive state
is always higher than that of the unbound states. However,
we anticipate in the thermodynamic limit that this peak
merges with the upper edge of the continuum band.

The bound and antibound states develop in the IC regime
of the e-ph coupling and persist up to the SC limit. We have
performed a detailed investigation of the properties of the
antibound state, especially the onset of the corresponding
peak in the phonon spectral function for a wide range of the
model parameters, which lead to an alternative interpretation
of this peak regarding its former explanation. The antibound
peak can be observed for the nonadiabatic values of w,
whereas the adiabatic limit of the states above the wy+W
threshold is not analyzed in the paper. Our results can be
compared to the analytical solution of the first-order scpt,
valid for the antiadiabatic values of the phonon energies. In
this approximation, the bound and antibound state can be
observed for g> w,. Nevertheless, the accurate numerical in-
vestigation yields even a lower value of the e-ph coupling for
the onset of the antibound state (Fig. 7), indicating that the
antibound peak can be already observed before the crossover
to the small polaron regime.
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